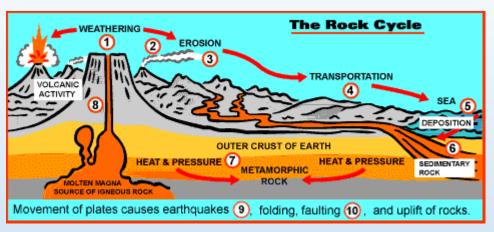
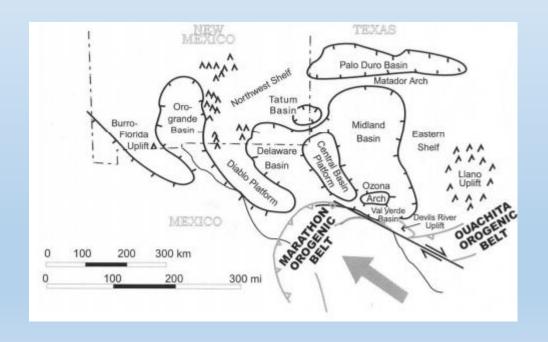
Brewster County Aquifers

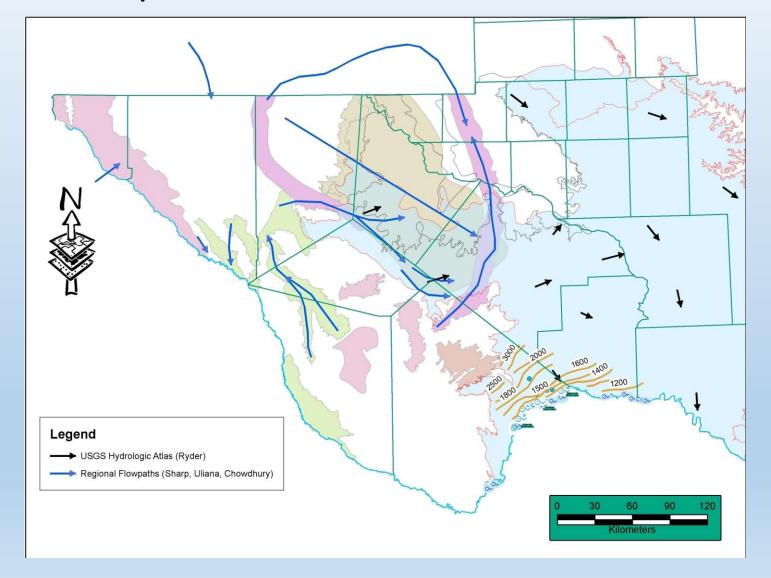
Kevin Urbanczyk
Rio Grande Research Center
BGPS/SRSU


Aquifer

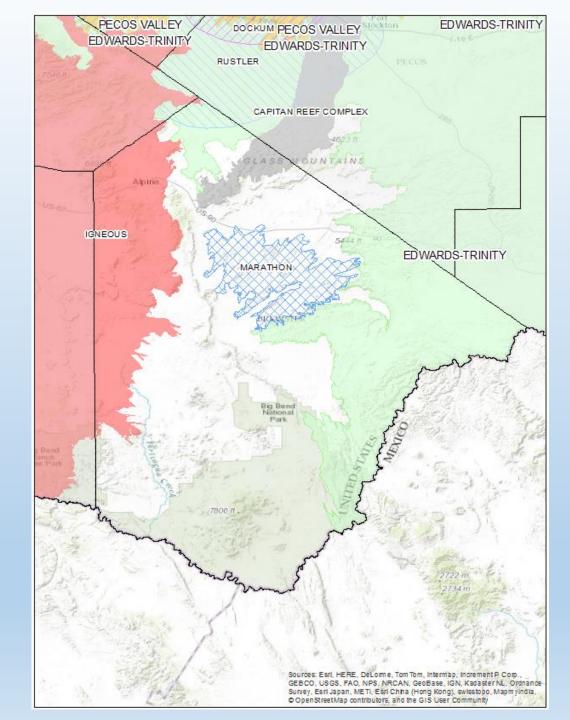
• Simple:


 Rock or Sediment that can hold and transmit water

More complex:

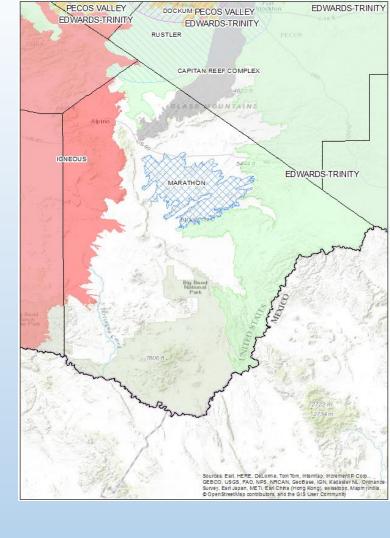

 Rock or sediment in a formation, group of formations, or part of a formation that is saturated and sufficiently permeable to transmit economic quantities of water to wells and springs (Fetter, 1994)

utahscience.oremjr.alpine.k12.ut.us


Aquifers of west Texas

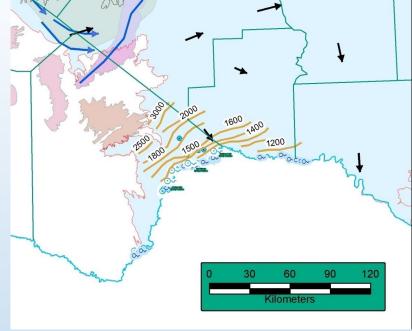
Era	Period	Aquifer		
Cenozoic	Quaternary	Cenozoic Pecos Alluvium Brazos River Alluvium West Texas Bolsons Seymour Lipan		
	Tertiary	Gulf Coast Carrizo-Wilcox Hueco-Mesilla Bolson Ogallala Sparta Igneous Queen City		
Mesozoic	Cretaceous	Woodbine Edwards-Trinity (Plateau) Edwards-Trinity (High Plains) Edwards (BFZ) Trinity Nacatoch Blossom Rita Blanca		
2	Jurassic	Rita Blanca		
	Triassic	Dockum		
	Permian	Blaine Bone Spring-Victorio Peak Capitan Reef Complex Rustler Lipan		
oic	Pennsylvanian	Marble Falls Marathon		
ZO	Mississippian	Marathon		
Paleozoic	Devonian	Marathon		
_	Silurian	Marathon		
	Ordovician	Ellenburger-San Saba Marathon		
	Cambrian	Ellenburger-San Saba Hickory		
	Precambrian			

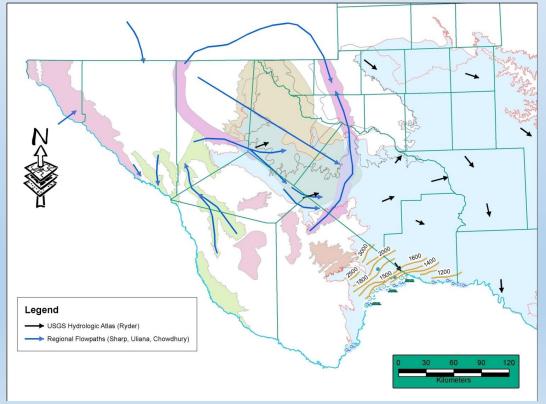
Brewster County Aquifers


- According to the Texas Water Development Board (TWDB):
 - Major aquifers:
 - Edwards-Trinity
 - Minor aquifers:
 - Igneous
 - Marathon
 - Capitan Reef Complex
 - Rustler

 "Igneous" – Paleogene/Neogene; various volcanic flows, intrusive bodies and sediment; makes a reasonable aquifer if fractured /

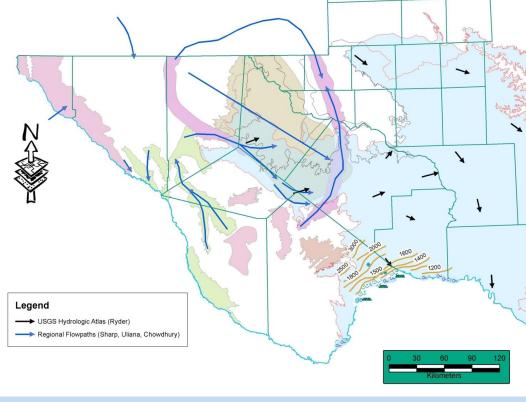
faulted




• "Edwards-Trinity Plateau" – Cretaceous marine sediments; limestone, dolomite

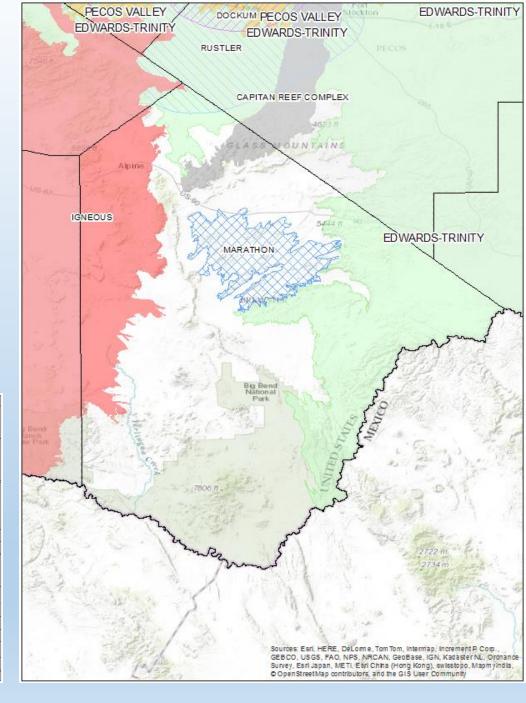
and shale

 "Rustler" – Permian; rock types include dolomite, limestone and gypsum, typically has high total dissolved solids

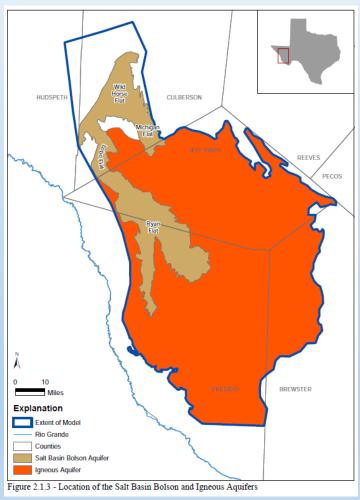


Era	Period	Aquifer		
zoic	Quaternary	Cenozoic Pecos Alluvium Brazos River Alluvium West Texas Bolsons Seymour Lipan		
Cenozoic	Tertiary	Gulf Coast Carrizo-Wilcox Hueco-Mesilla Bolson Ogallala Sparta Igneous Queen City		
Mesozoic	Cretaceous	Woodbine Edwards-Tirnity (Plateau) Edwards-Tirnity (High Plains) Edwards (BFZ) Tirnity Nacatoch Blossom Rita Blanca		
Σ .	Jurassic	Rita Blanca		
	Triassic	Dockum		
	Permian	Blaine Bone Spring-Victorio Peak Capitan Reef Complex Rustler Lipan		
)ic	Pennsylvanian	Marble Falls Marathon		
Paleozoic	Mississippian	Marathon		
Pale	Devonian	Marathon		
	Silurian	Marathon		
	Ordovician	Ellenburger-San Saba Marathon		
	Cambrian	Ellenburger-San Saba Hickory		
	Precambrian			

basin


 "Capitan Reef Complex" – Permian, represents reef system that formed around the margins of the Delaware

Marathon – various
 Paleozoic marine
 sediments including the
 Marathon limestone


Era	Period	Aquifer		
zoic	Quaternary	Cenozoic Pecos Alluvium Brazos River Alluvium West Texas Bolsons Seymour Lipan		
Cenozoic	Tertiary	Gulf Coast Carrizo-Wilcox Hucco-Mesilla Bolson Ogallala Sparta Igneous Queen City		
Mesozoic	Cretaceous	Woodbine Edwards-Trinity (Plateau) Edwards-Trinity (High Plains) Edwards (BFZ) Trinity Nacatoch Blossom Rita Blanca		
Σ	Jurassic	Rita Blanca		
	Triassic	Dockum		
	Permian	Blaine Bone Spring-Victorio Peak Capitan Reef Complex Rustler Lipan		
)ic	Pennsylvanian	Marble Falls Marathon		
)ZOZ	Mississippian	Marathon		
Paleozoic	Devonian	Marathon		
	Silurian	Marathon		
	Ordovician	Ellenburger-San Saba Marathon		
	Cambrian	Ellenburger-San Saba Hickory		
	Precambrian			

Groundwater Availability Model (GAM)

- TWDB effort to provide water resource information for water planning purposes
- GAMs available:
 - Igneous and Bolson aquifer (Beach and others, 2004)
 - Edwards-Trinity Plateau and Pecos Valley aquifers (Anaya and Jones, 2009)
 - Capitan Reef Complex eastern arm (Jones, 2016)
 - Rustler aquifer (Ewing and others, 2012)

Igneous Bolson Aquifer Conceptual Model

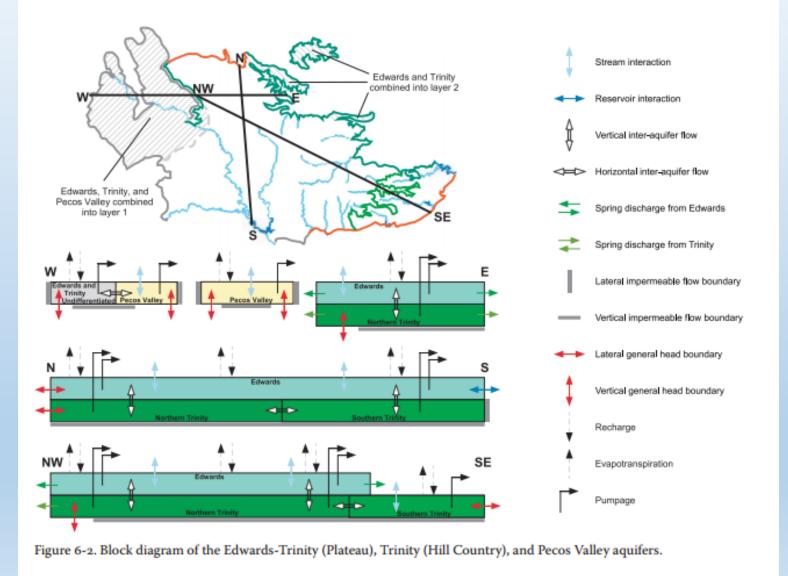
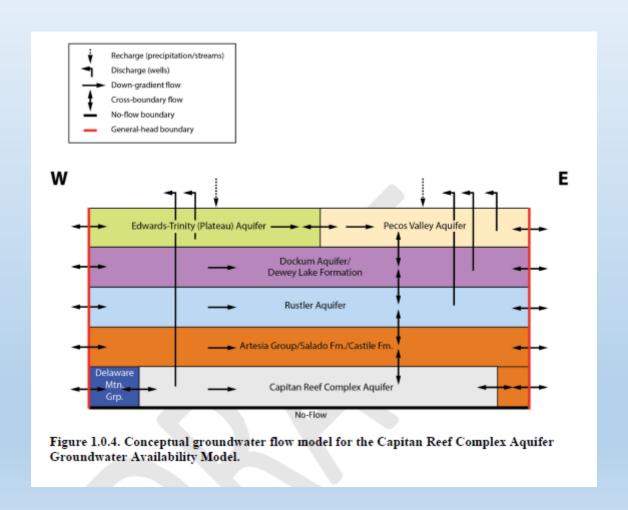
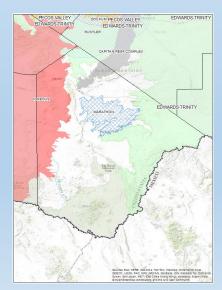

BOLSONS **IGNEOUS** CRETACEOUS - PERMIAN CRETACEOUS - PERMIAN **IGNEOUS** Cross-formational and downgradient flow Stream-Aguifer Interaction Pumping Evapotranspiration Springflow Recharge

Figure 5.1 Schematic conceptual model for the IBGAM

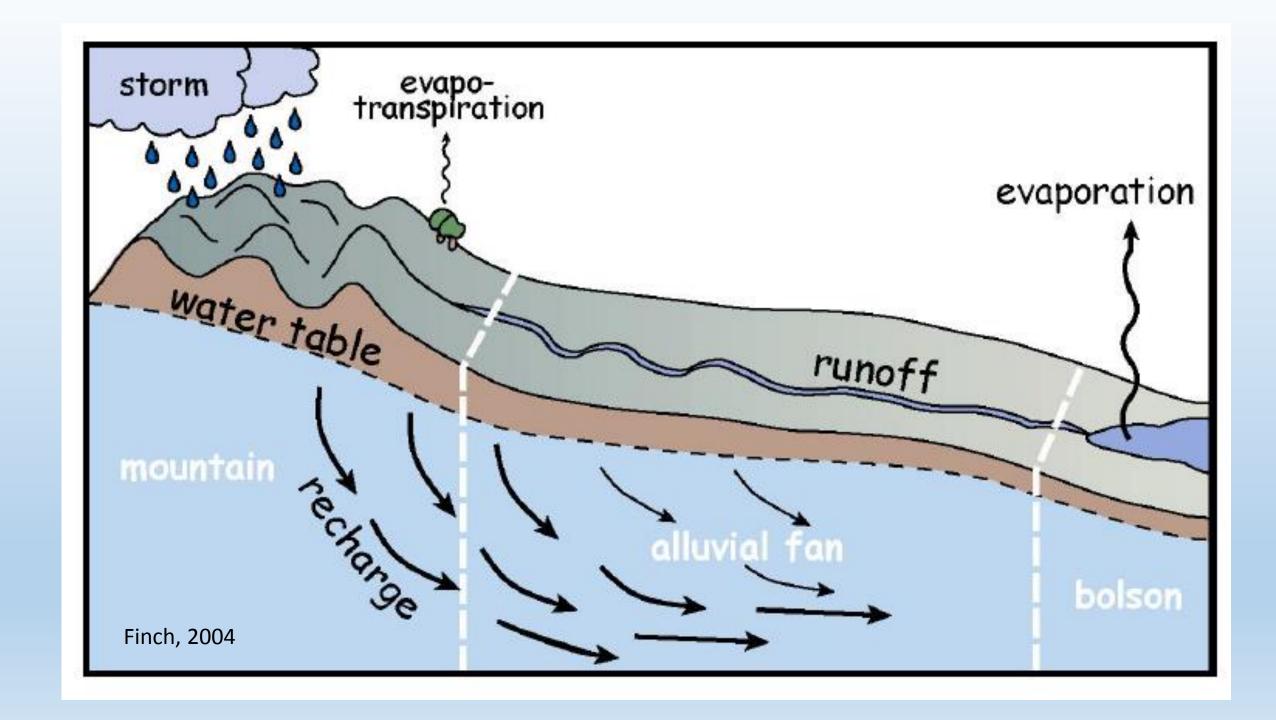

Beach and others, 2004

Edwards-Trinity Plateau Aquifer Conceptual

Model


Capitan Reef Complex Aquifer Conceptual Model

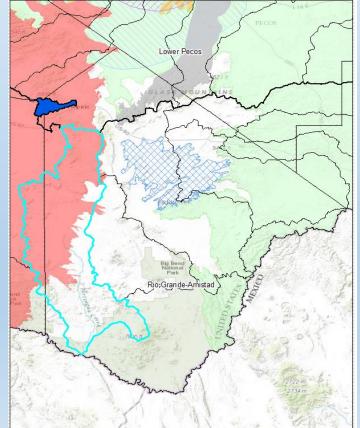
TWDB Annual groundwater existing supplies*


Aquifer	Annual "supplies" (acre-feet)		
Igneous	7,311		
Marathon	127		
Capitan Reef Complex	12,685		
Edwards-Trinity (Plateau)	255,991		
Rustler	2,521		

- * From the 2017 Texas State Water Plan
- The estimates are per aquifer; excluding the Marathon aquifer, only parts of all of the aquifers are in Brewster county

Recharge

- The method by which water gets into an aquifer
- A few specific ways that this might happen:
 - Direct infiltration onto aquifer outcrops (Edwards-Trinity Plateau)
 - Diffuse infiltration across buried aquifer (various examples)
 - Mountain front recharge across buried faults (Diablo mountains)
 - Surface water redistribution (Igneous)
- Recharge is difficult to quantify, estimates are commonly less than 5
 % of total precipitation



Recharge, continued

- Catchments can be delineated from surface topography
- These help to predict the topographic controls on recharge
- Hydrologic Unit Codes (HUC) maps are available at various scales
 - Two digit: 13 = Rio Grande Basin
 - Four digit: 1307 = Lower Pecos
 - Eight digit: 13040204 = Terlingua creek
 - Twelve digit: 130700060105 = Ramirez Tank-Alpine Creek



Sunny Glen recharge example

• Surface water redistribution:

sub-basin	sub-basin area, acres	Ia¹, inches	precipitation, ac-ft/yr	potential recharge, ac-ft/yr runoff generated within sub-basin that leaves sub-basin, ac-ft/yr		runoff that enters sub-basin from up- gradient sub-basins, ac-ft/yr	estimated recharge, ac-ft/yr*
CECCE	<u>'</u>						
Upper Alpine Creek	33,829	0.67	47,882	2,090	1,123	0	967

2 % of precipitation on the area

Sunny Glen recharge example

	sub-basin	sub-basin area, acres	Ia¹, inches	precipitation, ac-ft/yr	potential recharge, ac-ft/yr	runoff generated within sub-basin that leaves sub- basin, ac-ft/yr	runoff that enters sub-basin from up- gradient sub-basins, ac-ft/yr	estimated recharge, ac-ft/yr*
τ	Jpper Alpine	22.020	0.67	47.000	2.000	1 122	0	0.67
<u> </u>	Creek	33,829	0.67	47,882	2,090	1,123	U	967

My estimate for Sunny Glen:

Ramirez tank / Alpine Creek (HUC12)	23,674	0.67	33,508	proportional	proportional	0	670
---	--------	------	--------	--------------	--------------	---	-----

670 ac-ft/yr = maximum number

Summary

- The complex geology results in complex aquifers
- Quantitative GAM models are very general and provide overall water resource information
- GAM models are typically not detailed enough for local resource evaluation
- We need to be able to understand how much groundwater we can use and have a sustainable groundwater supply for the future