Brewster County Aquifers Kevin Urbanczyk Rio Grande Research Center BGPS/SRSU #### Aquifer #### • Simple: Rock or Sediment that can hold and transmit water #### More complex: Rock or sediment in a formation, group of formations, or part of a formation that is saturated and sufficiently permeable to transmit economic quantities of water to wells and springs (Fetter, 1994) utahscience.oremjr.alpine.k12.ut.us #### Aquifers of west Texas | Era | Period | Aquifer | | | |-----------|---------------|---|--|--| | Cenozoic | Quaternary | Cenozoic Pecos Alluvium
Brazos River Alluvium
West Texas Bolsons
Seymour
Lipan | | | | | Tertiary | Gulf Coast
Carrizo-Wilcox
Hueco-Mesilla Bolson
Ogallala
Sparta
Igneous
Queen City | | | | Mesozoic | Cretaceous | Woodbine Edwards-Trinity (Plateau) Edwards-Trinity (High Plains) Edwards (BFZ) Trinity Nacatoch Blossom Rita Blanca | | | | 2 | Jurassic | Rita Blanca | | | | | Triassic | Dockum | | | | | Permian | Blaine
Bone Spring-Victorio Peak
Capitan Reef Complex
Rustler
Lipan | | | | oic | Pennsylvanian | Marble Falls
Marathon | | | | ZO | Mississippian | Marathon | | | | Paleozoic | Devonian | Marathon | | | | _ | Silurian | Marathon | | | | | Ordovician | Ellenburger-San Saba
Marathon | | | | | Cambrian | Ellenburger-San Saba
Hickory | | | | | Precambrian | | | | #### Brewster County Aquifers - According to the Texas Water Development Board (TWDB): - Major aquifers: - Edwards-Trinity - Minor aquifers: - Igneous - Marathon - Capitan Reef Complex - Rustler "Igneous" – Paleogene/Neogene; various volcanic flows, intrusive bodies and sediment; makes a reasonable aquifer if fractured / faulted • "Edwards-Trinity Plateau" – Cretaceous marine sediments; limestone, dolomite and shale "Rustler" – Permian; rock types include dolomite, limestone and gypsum, typically has high total dissolved solids | Era | Period | Aquifer | | | |-----------|---------------|--|--|--| | zoic | Quaternary | Cenozoic Pecos Alluvium
Brazos River Alluvium
West Texas Bolsons
Seymour
Lipan | | | | Cenozoic | Tertiary | Gulf Coast
Carrizo-Wilcox
Hueco-Mesilla Bolson
Ogallala
Sparta
Igneous
Queen City | | | | Mesozoic | Cretaceous | Woodbine
Edwards-Tirnity (Plateau)
Edwards-Tirnity (High Plains)
Edwards (BFZ)
Tirnity
Nacatoch
Blossom
Rita Blanca | | | | Σ . | Jurassic | Rita Blanca | | | | | Triassic | Dockum | | | | | Permian | Blaine
Bone Spring-Victorio Peak
Capitan Reef Complex
Rustler
Lipan | | | |)ic | Pennsylvanian | Marble Falls
Marathon | | | | Paleozoic | Mississippian | Marathon | | | | Pale | Devonian | Marathon | | | | | Silurian | Marathon | | | | | Ordovician | Ellenburger-San Saba
Marathon | | | | | Cambrian | Ellenburger-San Saba
Hickory | | | | | Precambrian | | | | basin "Capitan Reef Complex" – Permian, represents reef system that formed around the margins of the Delaware Marathon – various Paleozoic marine sediments including the Marathon limestone | Era | Period | Aquifer | | | |-----------|---------------|---|--|--| | zoic | Quaternary | Cenozoic Pecos Alluvium
Brazos River Alluvium
West Texas Bolsons
Seymour
Lipan | | | | Cenozoic | Tertiary | Gulf Coast
Carrizo-Wilcox
Hucco-Mesilla Bolson
Ogallala
Sparta
Igneous
Queen City | | | | Mesozoic | Cretaceous | Woodbine Edwards-Trinity (Plateau) Edwards-Trinity (High Plains) Edwards (BFZ) Trinity Nacatoch Blossom Rita Blanca | | | | Σ | Jurassic | Rita Blanca | | | | | Triassic | Dockum | | | | | Permian | Blaine
Bone Spring-Victorio Peak
Capitan Reef Complex
Rustler
Lipan | | | |)ic | Pennsylvanian | Marble Falls
Marathon | | | |)ZOZ | Mississippian | Marathon | | | | Paleozoic | Devonian | Marathon | | | | | Silurian | Marathon | | | | | Ordovician | Ellenburger-San Saba
Marathon | | | | | Cambrian | Ellenburger-San Saba
Hickory | | | | | Precambrian | | | | #### Groundwater Availability Model (GAM) - TWDB effort to provide water resource information for water planning purposes - GAMs available: - Igneous and Bolson aquifer (Beach and others, 2004) - Edwards-Trinity Plateau and Pecos Valley aquifers (Anaya and Jones, 2009) - Capitan Reef Complex eastern arm (Jones, 2016) - Rustler aquifer (Ewing and others, 2012) #### Igneous Bolson Aquifer Conceptual Model BOLSONS **IGNEOUS** CRETACEOUS - PERMIAN CRETACEOUS - PERMIAN **IGNEOUS** Cross-formational and downgradient flow Stream-Aguifer Interaction Pumping Evapotranspiration Springflow Recharge Figure 5.1 Schematic conceptual model for the IBGAM Beach and others, 2004 ## Edwards-Trinity Plateau Aquifer Conceptual Model # Capitan Reef Complex Aquifer Conceptual Model #### TWDB Annual groundwater existing supplies* | Aquifer | Annual "supplies" (acre-feet) | | | |---------------------------|-------------------------------|--|--| | Igneous | 7,311 | | | | Marathon | 127 | | | | Capitan Reef Complex | 12,685 | | | | Edwards-Trinity (Plateau) | 255,991 | | | | Rustler | 2,521 | | | - * From the 2017 Texas State Water Plan - The estimates are per aquifer; excluding the Marathon aquifer, only parts of all of the aquifers are in Brewster county #### Recharge - The method by which water gets into an aquifer - A few specific ways that this might happen: - Direct infiltration onto aquifer outcrops (Edwards-Trinity Plateau) - Diffuse infiltration across buried aquifer (various examples) - Mountain front recharge across buried faults (Diablo mountains) - Surface water redistribution (Igneous) - Recharge is difficult to quantify, estimates are commonly less than 5 % of total precipitation #### Recharge, continued - Catchments can be delineated from surface topography - These help to predict the topographic controls on recharge - Hydrologic Unit Codes (HUC) maps are available at various scales - Two digit: 13 = Rio Grande Basin - Four digit: 1307 = Lower Pecos - Eight digit: 13040204 = Terlingua creek - Twelve digit: 130700060105 = Ramirez Tank-Alpine Creek #### Sunny Glen recharge example • Surface water redistribution: | sub-basin | sub-basin
area, acres | Ia¹,
inches | precipitation,
ac-ft/yr | potential recharge, ac-ft/yr runoff generated within sub-basin that leaves sub-basin, ac-ft/yr | | runoff that enters
sub-basin from up-
gradient sub-basins,
ac-ft/yr | estimated
recharge,
ac-ft/yr* | |-----------------------|--------------------------|----------------|----------------------------|--|-------|--|-------------------------------------| | CECCE | <u>'</u> | | | | | | | | Upper Alpine
Creek | 33,829 | 0.67 | 47,882 | 2,090 | 1,123 | 0 | 967 | 2 % of precipitation on the area #### Sunny Glen recharge example | | sub-basin | sub-basin
area, acres | Ia¹,
inches | precipitation,
ac-ft/yr | potential
recharge,
ac-ft/yr | runoff generated
within sub-basin
that leaves sub-
basin, ac-ft/yr | runoff that enters
sub-basin from up-
gradient sub-basins,
ac-ft/yr | estimated
recharge,
ac-ft/yr* | |----------|--------------|--------------------------|----------------|----------------------------|------------------------------------|---|--|-------------------------------------| | τ | Jpper Alpine | 22.020 | 0.67 | 47.000 | 2.000 | 1 122 | 0 | 0.67 | | <u> </u> | Creek | 33,829 | 0.67 | 47,882 | 2,090 | 1,123 | U | 967 | #### My estimate for Sunny Glen: | Ramirez
tank /
Alpine
Creek
(HUC12) | 23,674 | 0.67 | 33,508 | proportional | proportional | 0 | 670 | |---|--------|------|--------|--------------|--------------|---|-----| |---|--------|------|--------|--------------|--------------|---|-----| 670 ac-ft/yr = maximum number #### Summary - The complex geology results in complex aquifers - Quantitative GAM models are very general and provide overall water resource information - GAM models are typically not detailed enough for local resource evaluation - We need to be able to understand how much groundwater we can use and have a sustainable groundwater supply for the future